Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

СОГЛАСОВАНО		УТВЕРЖДАЮ Заведующий кафедрой			
Заведующий кафедрой					
Базовая кафедра				і кафедра мате	
математического моделиро	вания			рования и прог	цессов
и процессов управления наименование кафедры		<u>ynp</u>	авле	сния наименование кафедры	
наименование кафедры		Ант		наименование кафедры в В.К	
подпись, инициалы, фамилия		7 1117	•	дпись, инициалы, фам	илия
«»	20г.	« <u></u>	»		20r.
институт, реализующий ОП ВО			инст	титут, реализующий ди	сциплину
РАБОЧАЯ П ЧИСЈ	РОГРАМ ЛЕННЫІ	IMA E ME			Ы
Дисциплина Б1.О.09 Чис					
Направление подготовки /				ика Профиль 0	
специальность	Математический анализ, алгебра и логика				
Направленность					
(профиль)					
Форма обучения	очная				
Год набора	2019				

Красноярск 2021

РАБОЧАЯ ПРОГРАММА ЛИСПИПЛИНЫ

составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования с учетом профессиональных стандартов по укрупненной группе

010000 «МАТЕМАТИКА И МЕХАНИКА»

Направление подготовки /специальность (профиль/специализация)

Направление 01.03.01 Математика Профиль 01.03.01.31

Математический анализ, алгебра и логика

Программу составили

д.ф.-м.н., профессор, Бекежанова В.Б.

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Целью преподавания дисциплины «Численные методы» является:

- обучение студентов основным (базовым) численным методам решения классических задач алгебры, математического анализа и математической физики;
- формирование навыков и умений, необходимых при постановке задач вычислительной математики, построении и выборе эффективных алгоритмов, программировании методов, использовании стандартных математических пакетов для расчетов, анализе и интерпретации результатов вычислений;
- изучение математических моделей, алгоритмов, методов, программного обеспечения, инструментальных средств, необходимых для решения классических задач;
- углубление математического образования, развитие системного восприятия дисциплин, предусмотренных учебным планом для данного направления;
- подготовка студентов к дальнейшему самообразованию и применению полученных знаний в научно-исследовательской деятельности в областях, использующих математические методы и компьютерные технологии, при решении задач естествознания, техники, управления и экономики.

1.2 Задачи изучения дисциплины

Изучение дисциплины «Численные методы» направлено на:

- ознакомление студентов с основными понятиями и идеями вычислительной математики;
- формирование представлений о разделах вычислительной математики, основных алгоритмах методов вычислений, месте и роли вычислительной математики и вычислительного эксперимента;
- освоение студентами методики постановки и проведения вычислительного эксперимента с помощью современных компьютеров;
- области базовыми классических овладение знаниями методами методов освоение численного численных И классических задач линейной и нелинейной алгебры, аппроксимации дифференцирования функций, численного И интегрирования, численного решения начальных и краевых задач для обыкновенных дифференциальных уравнений, уравнений в частных производных и систем дифференциальных уравнений;
- формирование умений оценивать возникающую вычислительную погрешность и доказывать основные теоремы теории численных

методов;

- овладение навыками построения эффективных численных алгоритмов
- с использованием изученных языков высокого уровня, сравнения методов применительно к конкретным задачам по точности, скорости и затратности;
- формирование навыков использования специализированных математических пакетов прикладных программ, позволяющих сочетать реализацию численных алгоритмов с аналитическими представлениями и графическим отображением результатов вычислений;
- формирование навыков самостоятельного поиска, анализа и использования научно-технической литературы, а также самостоятельного освоения стандартных математических пакетов;
- формирование умений интерпретировать и использовать полученные знания при проведении научных и прикладных исследований в сфере высоких технологий, преподавании информатики и естественнонаучных дисциплин.
- 1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- ОПК-2:Способен разрабатывать, анализировать и внедрять новые математические модели в современных естествознании, технике, экономике и управлении
- ОПК-2.1:Выписывает математические постановки классических моделей, применяемых в естествознании, технике, экономике и управлении
- ОПК-2.2:Исследует и анализирует математические модели, применяемые в естествознании, технике, экономике и управлении
- ОПК-2.3:Применяет языки программирования и пакеты прикладных программ для проведения математического моделирования
- ОПК-1:Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности
- ОПК-1.1:Применяет фундаментальные знания, полученные в области математических и (или) естественных наук в профессиональной деятельности
- ОПК-1.2:Осуществляет выбор метода решения задач профессиональной деятельности на основе теоретических знаний
- ОПК-5:Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения
- ОПК-5.1:Разрабатывает алгоритмы решения прикладных задач с использованием математических и аналитических методов
- ОПК-5.2:Реализует алгоритмы с использованием современных средств разработки прикладного программного обеспечения
- ОПК-5.3:Применяет на практике знания основных положений и концепций прикладного и системного программирования, архитектуры компьютеров

1.4 Место дисциплины (модуля) в структуре образовательной программы

«Численные Дисциплина методы» относится К циклу естественнонаучных дисциплин, обеспечивающих базовую подготовку будущего специалиста. Ее изучение базируется дисциплинах: алгебра (системы линейных алгебраических уравнений, матрицы и определители); математический анализ (введение в анализ (понятие функции, формула Тейлора), дифференциальное исчисление функций одного переменного, дифференциальное исчисление функций интегральное переменных, исчисление функций многих переменной, ряды); дифференциальные уравнения (дифференциальные теоремы существования И единственности, дифференциальных уравнений, устойчивость, уравнения в частных уравнения математической физики (классификация производных), уравнений, решение задачи Коши, решение краевых задач, принцип максимума); функциональный анализ (метрические пространства (понятие нормы, функционала, оператора, скалярное произведение), самосопряженный оператор).

Основные положения курса численных методов могут быть использованы при изучении следующих дисциплин: математическое моделирование в различных областях, методы оптимизации и других предметов вариативной части профессионального цикла, связанных с решением задач компьютерного моделирования и обработки информации.

1.5 Особенности реализации дисциплины
 Язык реализации дисциплины Русский.
 Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		Семестр		
Вид учебной работы	Всего, зачетных единиц (акад.час)	5	6	
Общая трудоемкость дисциплины	7 (252)	3 (108)	4 (144)	
Контактная работа с преподавателем:	3,89 (140)	2 (72)	1,89 (68)	
занятия лекционного типа	1,94 (70)	1 (36)	0,94 (34)	
занятия семинарского типа				
в том числе: семинары				
практические занятия	1,94 (70)	1 (36)	0,94 (34)	
практикумы				
лабораторные работы				
другие виды контактной работы				
в том числе: групповые консультации				
индивидуальные консультации				
иная внеаудиторная контактная работа:				
групповые занятия				
индивидуальные занятия				
Самостоятельная работа обучающихся:	2,11 (76)	1 (36)	1,11 (40)	
изучение теоретического курса (TO)				
расчетно-графические задания, задачи (РГЗ)				
реферат, эссе (Р)				
курсовое проектирование (КП)	Нет	Нет	Нет	
курсовая работа (КР)	Нет	Нет	Нет	
Промежуточная аттестация (Зачёт) (Экзамен)	1 (36)		1 (36)	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

			ятия кого типа			
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционн ого типа (акад.час)	Семинар ы и/или Практиче ские занятия (акад.час)	Лаборато рные работы и/или Практику мы (акад.час)	Самостоя тельная работа, (акад.час)	Формируемые компетенции
1	2	2	1	5	6	7
1	Введение, элементы теории погрешностей. Численные методы линейной и нелинейной алгебры	18	14	0	18	
2	Аппроксимация функций. Решение нелинейных уравнений. Численное дифференцирова ние и интегрирование	18	22	0	18	
3	Численные методы решения задач для обыкновенных дифференциальн ых уравнений	8	6	0	14	
4	Численное решение задач математической физики	26	28	0	26	
Всего		70	70	0	76	

3.2 Занятия лекционного типа

№ № раздела Наименование занятий Объем в акад.
--

п/п	дисциплин ы		Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Математическое моделирование и вычислительный эксперимент. Роль компьютерноориентированных численных методов в исследовании сложных мат. моделей.	2	0	0
2	1	Классификация погрешностей. Абсолютная и относительная погрешности. Прямая и обратная задача теории погрешностей. Неустойчивые алгоритмы. Задачи вычислительной алгебры. Прямые и обратные методы.	2	0	0
3	1	Метод Гаусса решения систем линейных алгебраических уравнений (СЛАУ). Модификации метода. Условия применимости. LU – разложение матрицы.	2	0	0
4	1	Вычисление определителя и обратной матрицы. Метод квадратного корня. Векторные и матричные нормы. Согласованность норм. Обусловленность СЛУ. Число обусловленности матрицы.	2	0	0

5	1	Итерационные методы, их классификация. Методы Якоби, Зейделя, простой итерации и верхней релаксации. Каноническая форма одношаговых итерационных методов. Исследование сходимости итерационных методов. Необходимое и достаточное условие сходимости стационарного итерационного метода. Оценка скорости сходимости.	2	0	0
6	1	Явный итерационный метод с чебышевским набором параметров. Теорема о выборе оптимального набора параметров	2	0	0
7	1	Итерационные методы вариационного типа. Методы минимальных невязок, минимальных поправок, скорейшего спуска	2	0	0
8	1	Полная и частичная проблема собственных значений. Итерационные методы решения частичной проблемы	2	0	0
9	1	Метод Якоби решения полной проблемы собственных значений для симметричной матрицы. QR — метод. Оценки собственных чисел. Теоремы Гершгорина	2	0	0

10	2	Задача интерполирования. Существование и единственность обобщенного интерполяционного многочлена. Интерполирование алгебраическими многочленами. Интерполяционные полиномы Лагранжа и Ньютона. Оценка погрешности интерполяции	2	0	0
11	2	Многочлены Чебышева. Оптимальный выбор узлов интерполирования. Явный итерационный метод с чебышеским набором параметров. Сходимость интерполяционного процесса	2	0	0
12	2	Интерполирование с кратными узлами. Многочлены Эрмита. Интерполирование сплайнами. Существование и единственность кубического сплайна. Построение кубического сплайна	2	0	0
13	2	Интерполирование тригономет-рическими многочленами и приближение рациональными функциями. Наилучшее приближение функции, заданной таблично. Приближение функций в нормированном пространстве	2	0	0

14	2	Задача численного дифференцирования. Простейшие операторы конечных разностей. Некорректность процедуры численного дифференцирования. Оценка погрешности. Задача численного интегрирования. Составные квадрагурные формулы	2	0	0
15	2	Квадратурные формулы интерполяционного типа на примере формул прямоугольников, трапеций и Симпсона. Погрешность. Апостериорная оценка погрешности по Рунге. Метод экстраполяции Ричардсона для повышения точности квадратурных формул	2	0	0
16	2	Симметричные квадратурные формулы. Формулы Ньютона-Котеса. Формулы Гаусса. Построение. Оценка погрешности. Устойчивость. Формулы Эрмита	2	0	0
17	2	Численное решение нелинейных уравнений. Выделение корней. Метод бисекции. Метод простой итерации. Теорема о сходимости метода простой итерации. Метод Эйткена ускорения сходимости	2	0	0

18	2	Метод Ньютона, его модификации. Случаи простых и кратных корней. Условия сходимости. Метод секущих. Методы решения систем нелинейных уравнений. Теорема о неподвижной точке	2	0	0
19	3	Методы решения задачи Коши. Решение с помощью формулы Тейлора. Основные понятия и определения. Простейшие примеры численных методов (метод Эйлера, схема с весами, методы типа предиктор-корректор). Общая формулировка методов Рунге-Кутты	2	0	0
20	3	Семейства методов Рунге-Кутты 2-го, 3-го, 4-го порядков точности. Построение методов заданного порядка точности	2	0	0
21	3	Численное решение задачи Коши с автоматическим выбором шага. Многошаговые разностные методы. Методы Адамса. Погрешность аппроксимации и устойчивость разностных методов	2	0	0
22	3	Численное интегрирование жестких систем. Методы Гира	2	0	0

23	4	Методы построения разностных схем. Основные понятия теории разностных схем. Аппроксимация, устойчивость, сходимость. Теорема об эквивалентности	2	0	0
24	4	Методы исследования устойчивости разностных схем. Необходимое условие устойчивости по начальным данным. Необходимый спектральный признак Неймана	2	0	0
25	4	Достаточное условие устойчивости. Принцип максимума. Принцип максимума для уравнений параболического и эллиптического типа. Теорема сравнения. Устойчивость по граничным условиям	2	0	0
26	4	Теорема об оценке решения неоднородного уравнения. Разностные схемы для уравнений переноса. Явные схемы для задачи Коши. Неявная схема для решения краевых задачи. Схема с весами	2	0	0
27	4	Разностные схемы для одномерного уравнения теплопроводности с постоянными коэффициентами. Схема с весами. Исследование свойств схемы с весами	2	0	0
28	4	Аппроксимация граничных условий. Метод прогонки для решения краевых задач	2	0	0

29	4	Разностные схемы для многомерного уравнения теплопроводности. Экономичные разностные схемы. Схема переменных направлений. Метод суммарной	2	0	0
30	4	аппроксимации Методы решения сеточных уравнений для эллиптических задач. Методы Якоби, Зейделя, верхней релаксации на примере задачи Дирихле для уравнения Пуассона	2	0	0
31	4	Метод прямых для решения задач математической физики. Продольная и поперечная схемы метода. Случай эллиптической задачи	2	0	0
32	4	Случаи параболических и гиперболических задач. Вариационные методы. Основные понятия. Метод Ритца	2	0	0
33	4	Выбор базисных функций для реализации метода Ритца. Метод Галеркина. Метод Галеркина для решения спектральных задач	2	0	0
34	4	Методы взвешенных невязок. Метод коллокаций, метод наименьших квадратов, метод моментов, метод подобластей	4	0	0
Door			70	0	0

3.3 Занятия семинарского типа

2.2 Guilling Comming Cher C Inna	
	Объем в акад. часах

			Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Точные методы решения СЛАУ. Обращение матрицы. Вычисление определителя		0	0
2	1	Итерационные методы решения СЛАУ. Исследование сходимости методов. Оценка скорости сходимости	4	0	0
3	1	Вычисление собственных значений и собственных векторов матрицы	5	0	0
4	2	Аппроксимация функций. Построение интерполяционных многочленов Лагранжа, Ньютона и Эрмита. Сплайн-интерполяция. Приближение функций, заданных таблично. Приближение функций в нормированном пространстве	6	0	0
5	2	Численное дифференцирование, исследование корректности процедуры численного дифференцирования. Численное интегрирование. Составные квадратурные формулы. Формулы Гаусса. Сравнение погрешности различных квадратурных формул	10	0	0
6	2	Численное решение нелинейных уравнений и систем	6	0	0
7	3	Решение задачи Коши для обыкновенных дифференциальных уравнений и систем уравнений. Построение методов Рунге-Кутты	6	0	0

8	4	Решение краевых задач для параболических уравнений. Исследование сходимости разностных схем	8	0	0
9	4	Решение краевых задач для эллиптических уравнений	6	0	0
10	4	Решение краевых задач для гиперболических уравнений	6	0	0
11	4	Решение краевых и спектральных задач методом Галеркина	8	0	0
Dagra	,		70	Δ	0

3.4 Лабораторные занятия

No.	No		Объем в акад.часах		
№ п/п	раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
Dagge					

4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

	Авторы,	Заглавие	Издательство,
	составители		год
Л1.1	Распопов В. Е.,	Численные методы: электрон. учеб	Красноярск:
	Клунникова	метод. комплекс дисциплины	ИПК СФУ, 2007
	M .M.,		
	Сапожников В.		
	А., Гохвайс Е. В.		

5 Фонд оценочных средств для проведения промежуточной аттестации

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

6.1. Основная литература				
Авторы,	Заглавие	Издательство,		
составители		год		

Л1.1	Зализняк В. Е., Щепановская Г. И.	Теория и практика по вычислительной математике: учебное пособие для студентов вузов по специальности (направлению) подготовки ВПО 010501 (010500.62) "Прикладная математика и информатика" (ОПД. Ф.09-Численные методы)	Красноярск: СФУ, 2012
Л1.2	Зализняк В.Е.	Численные методы. Основы научных вычислений: учеб. пособие для бакалавров по спец. (напр.) подг. 010501 (010500.62) "Прикладная математика и информатика"	Москва: Юрайт, 2012
Л1.3	Пирумов У. Г.	Численные методы: теория и практика: учебное пособие для студентов вузов (бакалавров), обучающихся по направлению "Математика. Прикладная математика"	Москва: Юрайт, 2012
		6.2. Дополнительная литература	
	Авторы, составители	Заглавие	Издательство, год
Л2.1	Самарский А. А.	Введение в численные методы: учебное пособие для вузов	Москва: Лань, 2009
		6.3. Методические разработки	
	Авторы, составители	Заглавие	Издательство, год
Л3.1	Распопов В. Е., Клунникова М .М., Сапожников В. А., Гохвайс Е. В.	Численные методы: электрон. учеб метод. комплекс дисциплины	Красноярск: ИПК СФУ, 2007

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Э1	Численные методы	http://www.ict.edu.ru/catalog/index.php
		?
		a=nav&c=getForm&r=navOpen&id_re
		s=2315&internet=http://www.exponent
		a.ru/educat/systemat/tarasevich/

8 Методические указания для обучающихся по освоению дисциплины (модуля)

В течение каждого из двух семестров учебный процесс по дисциплине «Численные методы» включает: лекции -1 раз в неделю (2 ак. часа), лабораторные работы -1 раз в неделю (2 ак. часа), зачёт и экзамен. Зачёт выставляется в конце 5-го семестра по текущей успеваемости автоматически, если студент набрал более 90% баллов, отводимых на зачёт.

В 5-ом семестре проводятся 3 домашние контрольные работы, не менее 4 РГЗ и 6 лабораторных работ. В 6-ом семестре - 4 домашние контрольные работы, не менее 3 РГЗ и 5 лабораторных работ.

Для изучения теоретического материала используются конспекты лекций, учебники и учебные пособия, приведённые в списке литературы (п. 4, 6, 7). Дополнительно на самостоятельное изучение выносится изучение специализированных пакетов MathCAD, MathLAB или Марle и/или языков Фортран, С++, Delphi.

Для успешного освоения материала студентам выдаются РГЗ, выполняемые с использованием математических пакетов MathCAD/ MathLAB/Maple или в виде программной реализации с помощью языков высокого уровня. Количество РГЗ может варьироваться от 7 до 10

в зависимости от уровня подготовки студентов и сложности конкретного задания. Выдача РГЗ и приём выполненных заданий осуществляется преподавателем, ведущим лабораторные занятия. Сдача проводится во время лабораторных занятий в форме представления программы с объяснением при пошаговой реализации, результатов расчётов в виде таблицы значений или графиков и интерпретации полученных результатов.

Для закрепления материала выдаются контрольные задачи. Выдача задач и проверка решения может проводиться лектором или преподавателем, ведущим лабораторные занятия. Решения задач представляются в печатном/рукописном виде.

В конце 6-го семестра проводится устный экзамен, на который допускаются студенты, сдавшие зачёт, РГЗ и лабораторные работы.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

9.1 Перечень необходимого программного обеспечения

9.1.1 Пакеты прикладных программ MatLAB, MathCAD или Maple.

- 9.1.2 Интегрированные среды для языков Delphi, Fortran, Pascal, Visual C (C++)
 - 9.2 Перечень необходимых информационных справочных систем

9.2.1	Справочная система
9.2.2	http://www.mathworks.com/support/learn-with-matlab-tutorials.html

10 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Быстродействующие ПЭВМ (15 шт.), лицензионные пакеты программ (см. п. 9.1.)